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This work has constructed a model for the theoretical analysis of generalized magneto-optical transmission (GMOT) filters for any 
relative angle between the light beam and the applied magnetic field.  This model was experimentally validated and shows good 
agreement between the theoretical predictions and the experimental spectra.  In addition, the value of examining magneto-optical 
filters for arbitrary angle cases was demonstrated by revealing an optimized filter with an equivalent noise bandwidth of 0.56 GHz 
which is approximately a factor of two better than those previously reported. 
 

1. BACKGROUND 
 

Magneto-optical scattering has been extensively 
studied with the dominant emphasis on the Faraday Effect in 
atomic media.  The Faraday Effect occurs when a resonant light 
beam is propagated through an atomic medium parallel to an 
applied magnetic field. These studies, in addition to basic 
theory [1-4], have examined a wide area of applications such as 
atmospheric LIDAR [5-7], communications [8], quantum optics 
[9], helioseismology [10], etc.  While the Faraday Effect has 
dominated the study there has also been some examination of 
the Voigt Effect which occurs when a resonant light beam is 
propagated through an atomic medium perpendicular to the 
applied magnetic field.  An analysis of the Voigt Effect was 
conducted by Yamamoto [11], its usefulness as a filter for 455 
nm cesium was examined by Menders [12] and the detection of 
atomic species by Kankar[13].  The final and most general case 
where the resonant light beam is propagated though the 
atomic medium at an angle θ relative to the applied magnetic 
field where 0 < θ < 90 degrees.  The only examination of a fully 
generalized solution was presented by Palik [1].  Palik 
provides a framework for the solution for arbitrary angle but 
does not provide a complete solution or theoretical results.  
This work extends the magneto-optical filter work for 
arbitrary angle of incidence relative to the applied magnetic 
field and offers experimental results to validate the 
calculations. 

 

2. THEORY 
 

A complete analysis of magneto-optical filters can be 
broken into two distinct parts.  The first part is the 
characterization of the dispersive medium and the second is 
the propagation of a plane wave through the dispersive 
medium.  The first part, the characterization of the dispersive 
medium has been demonstrated throughout the literature.  
These characterizations vary from very simple two level 
analyses to robust calculations which take into account atomic 
hyperfine splitting, Zeeman splitting, moving particles 
(Doppler Effect), the Boltzmann distribution of the energy level 
population and the inclusion of the line strength for each 
dipole allowed transition.  The second part, the propagation of 
a plane wave through a dispersive medium, is always 
evaluated in one of two limiting cases, Faraday or Voigt.  The 
feature that distinguishes these two cases for Faraday the 
plane wave propagates parallel to the applied magnetic field 

and for Voigt the plane wave propagates perpendicular to the 
magnetic field.  This work will break with previous work and 
demonstrate a theoretical treatment for cases when the angle 
between the direction the plane wave propagates and the 
magnetic field is between 0 and 90 degrees.   

 
A. Plane Wave Propagation 
 

This derivation follows the work by Palik [1].  Palik 
derives a case where the magnetic field is fixed and the plane 
wave direction of propagation is arbitrary.  This work will 
modify the derivation so that the result has a fixed plane wave 
direction of propagation and the magnetic field is rotated.  This 
change produces a framework which is much more amenable 
to laboratory work.  The development begins with Maxwell’s 
equations.   

𝛻 × 𝑬 = −𝜇0

𝜕𝑯

𝜕𝑡
, 𝛻 × 𝑯 = 𝜖

𝜕𝑬

𝜕𝑡
+ 𝑱 

 

𝛻 ∙ 𝑬 =
𝜌

𝜖
, 𝛻 ∙ 𝑩 = 0 (1) 

 
The case we are interested in examining is an atomic 

vapor with no current or charge density with a monochromatic 

plane-wave solutions given by 𝑒𝑖(𝒌∙𝒓−𝜔𝑡).  Substituting this 
plane wave solution into Maxwell’s equations results in the  
wave equation, 

𝒌 × (𝒌 × 𝑬) +
𝟏

𝜖0
(
𝜔

 𝑐
)
𝟐
𝝐 ∙ 𝑬 = 𝟎. 

(2) 

 
From here, we assume a light beam that lies in the xz-

plane making an angle with the z-axis, a magnetic field parallel 
to the z-axis and define the complex index of refraction n given 
by 

n2 = (
𝒄

𝜔
)
𝟐
(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2) . 
(3) 

Also, with the magnetic field aligned along the z-axis the 
dielectric tensor can be cast in the gyrotropic form [1] 

𝝐 = [

 𝜖𝑥  𝜖𝑥𝑦 0

− 𝜖𝑥𝑦  𝜖𝑥 0

0 0  𝜖𝑧

] 

 
(4) 

This allows the dispersion equation to be cast in matrix form 

[
 
 
 
 
 
𝜖𝑥

𝜖0
− n2 cos2 𝜃

𝜖𝑥𝑦

𝜖0
n2 sin 𝜃 cos 𝜃

−
𝜖𝑥𝑦

𝜖0

𝜖𝑥

𝜖0
− n2 0

n2 sin 𝜃 cos 𝜃 0
𝜖𝑧

𝜖0
− n2 sin2 𝜃

]
 
 
 
 
 

[

𝐸𝑥

𝐸𝑦

𝐸𝑧

] = 0. 

 
 

(5) 
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This matrix represents a plane wave which 

propagates at an angle θ relative to the applied magnetic field 
along the z-axis.  This formalism is not the optimum choice 
when an experimental setup is considered.  In a laboratory 
environment, a laser beam is passed through a polarizer, vapor 
cell and then through another polarizer.  Polarizers are two 
dimensional in nature but this treatment, in general, requires a 
three dimensional polarization of the incident electric field.  
This contradiction is solved by starting with the polarization 
aligned along the x and y-axis (two dimensions) then rotating 
the x-axis component to produce a polarization component 
that lies along the z-axis.  This transformation results in a fixed 
beam that propagates along the z-axis with polarization along 
the x and y-axis and the magnetic field is rotated through the 
xz-plane. 

 
  To begin this transformation, we define the z-axis as 

the direction the plane wave propagates and the x and y-axis as 
the direction of the electric field’s polarization.  Once this 
choice is made it is a simple matter to transform the plane 
wave using a transformation matrix that rotates the laser beam 
around the y-axis.   

[
cos 𝜃 0 sin 𝜃

0 1 0
−sin 𝜃 0 cos 𝜃

]  
 

(6) 

 
Ultimately, this transformation also maps the 

dispersion matrix from a magnetic field reference frame to the 
plane wave’s reference frame.  The laser plane wave E0 = (Ex, 
Ey, 0) is fixed and the magnetic field rotates around the y-axis 
and the B field lies in the xz-plane.  Note, Ex and Ey are complex 
quantities.  Therefore, this formalism will apply to right and 
left handed circularly polarized light as well as linearly 
polarized light.  Applying the transformation to the wave 
equation results in 

[
 
 
 
 (

𝜖𝑥

𝜖0
− n2)  cos 𝜃

𝜖𝑥𝑦

𝜖0

𝜖𝑥

𝜖0
 sin 𝜃

−
𝜖𝑥𝑦

𝜖0
 cos 𝜃

𝜖𝑥

𝜖0
− n2 −

𝜖𝑥𝑦

𝜖0
 sin 𝜃

(n2 −
𝜖𝑧

𝜖0
)  sin  𝜃 0

𝜖𝑧

𝜖0
 cos 𝜃 ]

 
 
 
 

[
𝐸𝑥

𝐸𝑦

0

] = 0.   

 
 

(7) 

 
The solution to this set or equations is found by 

setting the determinant of the matrix to zero and solving for 
the two roots of n2.  Once the roots n1

2 and n2
2 are found, each 

root is successively substituted back into the matrix and the 
Eigenvector corresponding to the zero eigenvalue is evaluated.  
In general the Eigenvectors are dependent on 𝜃 and will be 
designated Ev1 and Ev2. 

 
After the Eigenvectors are known, the resulting 

electric field Ef can be constructed by projecting the initial 
electric field E0 onto the Eigenvectors and propagating the field 
along the z axis. 

𝐄𝐟(z, θ) =  𝐄𝐯𝟏

𝐄𝟎 ∙ 𝐄𝐯𝟏
∗

𝐄𝐯𝟏 ∙ 𝐄𝐯𝟏
∗  e

i(2πzn1
ν0

c⁄ −𝜔𝑡)

+ 𝐄𝐯𝟐

𝐄𝟎 ∙ 𝐄𝐯𝟐
∗

𝐄𝐯𝟐 ∙ 𝐄𝐯𝟐
∗  e

i(2πzn2
ν0

c⁄ −𝜔𝑡)   

 
 

(8) 

After the resulting electric field Ef has been constructed, all 
that remains is a filter operation by applying a crossed 
polarizer.  This filtering operation is performed by projecting 
the resulting field Ef onto the interrogation polarizer PI = (Px, 
Py, 0).  The values Px and Py are complex allowing for 

polarization interrogation for circular as well as linear 
polarization.  Then the transmission can be determined by 
dividing the magnitude squared of the resulting electric field 
by the magnitude squared of the initial E field.  

T(z, θ) =
(𝐄𝐟(z, θ) ∙ 𝐏𝐈)(𝐄𝐟(z, θ) ∙ 𝐏𝐈)

∗

𝐄𝟎 ∙ 𝐄𝟎
∗  

 
(9) 

 
As an example, the Faraday case will be examined.  

For the Faraday Effect, 𝜃 = 0 and we assume without loss of 
generality that the E field only has an Ex polarization and that 
the interrogation polarizer is oriented along the y-axis, then for 
the Faraday Effect case the roots from the determinant of the 
dispersion matrix and the Eigenvectors are: 

n1
2 =

𝜖x − i𝜖xy

𝜖0
, n2

2 =
𝜖x + i𝜖xy

𝜖0
 

(10) 

  
𝐄𝐯𝟏 = {i,1,0}, 𝐄 𝐯𝟐 =  {−i,1,0}.  (11) 

Using these to construct the transmission through the filter 
yields the Faraday Effect transmission Tf equation. 

T𝑓(z) =
1

4
[e

2iπzν0√𝜖x−i𝜖xy

𝑐√𝜖0 − e

2iπzν0√𝜖x+i𝜖xy

𝑐√𝜖0 ]

× [e

2iπzν0√𝜖x−i𝜖xy

𝑐√𝜖0 − e

2i2iπzν0√𝜖x+i𝜖xy

𝑐√𝜖0 ]

∗

 

 
 

 
(12) 

 
For the Voigt Effect case 𝜃 = 𝜋/2 and we assume the 

polarization of the E field Ex = Ey, and the interrogation 
polarizer is rotated 90 degrees relative to the incident electric 
field polarization.  The roots and the associated Eigenvectors 
are given:  

n1
2 =

1

𝜖0
(𝜖x +

𝜖𝑥𝑦
2

𝜖x
) , n2

2 =
𝜖z

𝜖0
 

(13) 

  

𝐄𝐯𝟏 = {0,
𝜖x

𝜖xy
, 1} , 𝐄 𝐯𝟐 = {1,0,0}.  (14) 

The resulting transmission Tv for the Voigt configuration is 
 

Tv(z) =
1

4

[
 
 
 
 
 
 

𝜖x𝜖x
∗ e

2iπzν0√
𝜖xy

2

𝜖x
+𝜖x

√𝜖0c

|𝜖x|
2 + |𝜖xy|

2 + e

2iπzν0√𝜖z

c√𝜖0

]
 
 
 
 
 
 

×

[
 
 
 
 
 
 

𝜖x𝜖x
∗ e

2iπzν0√
𝜖xy

2

𝜖x
+𝜖x

√𝜖0c

|𝜖x|
2 + |𝜖xy|

2 + e

2iπzν0√𝜖z

c√𝜖0

]
 
 
 
 
 
 
∗

. 

 
 
 
 
 
 

(15) 

 
The general case for arbitrary 𝜃 can be solved 

analytically using a mathematical tool such as Mathematica.  
Unfortunately, while an analytic solution exists, it is 
approximately 200 pages of equations and therefore will not 
be printed here.   

 
In order to evaluate the magneto-optical 

transmission the elements of the dielectric tensor  𝜖𝑥,  𝜖𝑥𝑦, and 
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 𝜖𝑧 must be calculated. From Yariv [14], in general the 
dielectric tensor can be related to the polarizability tensor by 

𝜖𝑖𝑗 = 𝜖0(1 + 𝜒𝑖𝑗).  For the instance the magnetic field is aligned 

along the z-axis, the dielectric tenser is written in the 
gyrotropic form  

[

 𝜖𝑥  𝜖𝑥𝑦 0

− 𝜖𝑥𝑦  𝜖𝑥 0

0 0  𝜖𝑧

]. 

 
(16) 

This matrix can be diagonalized by calculating the Eigenvalues 
and relating the result to the polarizability tensor. 

[

 𝜖𝑥 − 𝑖 𝜖𝑥𝑦 0 0

0  𝜖𝑥 − 𝑖 𝜖𝑥𝑦 0

0 0  𝜖𝑧

] = 𝜖0 + 𝜖0 [

 𝜒+ 0 0
0  𝜒− 0
0 0  𝜒𝑧

] 

 
(17) 

Using this relationship allows the dielectric tensor elements to 
be related to the elements of the polarizability tensor 𝝌  

𝜖𝑥 =
𝜖0

2
(2 + 𝜒+ + 𝜒−),    𝜖𝑥𝑦 =

𝜖0

2
𝑖(𝜒− − 𝜒+),   

 𝜖𝑧 = 𝜖0(1 + 𝜒0) 

 
(18) 

where χ± and χ0 are the elements of the polarizability tensor 

for the 𝜎± and 𝜋 dipole allowed transitions respectively. 
 
B. Polarizability Tensor 
 

With the completion of a generalized method for 
propagating a plane wave through a dispersive medium, the 

next step is the characterization of the dispersive medium.  The 
characterization of the medium is accomplished by calculating 
the polarizability tensor.  Such a representation should take 
into account the atomic hyperfine splitting, Zeeman splitting, 
the motion of the atoms (Doppler Effect) the Boltzmann 
distribution of the energy level population and include the line 
strength for each dipole allowed transition.  There are many 
examples in the literature which demonstrate the computation 
of the polarizability tensor 𝝌.  This work uses Dressler[2] as a 
model for computing the polarizability tensor.  

 
Starting with an atom in the presence of an external 

magnetic field B0, the total angular momentum F = I + J (where 
I is the nuclear spin and J is the orbital angular momentum)  
can be projected along the axis of the magnetic field yielding a 
good quantum number m.  In the presence of a magnetic field 
the atomic hyperfine levels shift, split and cross.  The result is 
the Zeeman split levels.  The subsequent energy levels can be 
represented by the total Hamiltonian 

𝑯 = 𝑯ℎ𝑓𝑠 + 𝑯𝑧 , (19) 

which is the sum of the hyperfine split and the Zeeman split 
energy levels.  The matrix elements for the Hamiltonian [15] 
are given by the following equation  
 

〈IJFm|H|IJF′m〉 =
1

2
δF,F′ (AK + B

(3K(K + 1) − 2I(I + 1) ∗ 2J(J + 1))

2I(2I − 1) ∗ 2J(2J − 1)

+ 2C
5K2 (

1
4

K + 1) + K(I(I + 1) + J(J + 1) + 3 − 3I(I + 1)J(J + 1)) − 5I(I + 1)J(J + 1)

I(I − 1)(2I − 1)J(J − 1)(2J − 1)
)

+
μBgJB0

h
(−1)(I+J+m+1)√J(J + 1) (2J + 1) (2F + 1) (2F′ + 1) { 

J 1 J

F′ I F
}   [  F 1 F′

−m 0 m
]

−
μNgIB0

h
(−1)(I+J+m+1)√I(I + 1) (2I + 1) (2F + 1) (2F′ + 1) { 

I 1 I
F′ J F

}     [ F 1 F′
−m 0 m

] 

 
 
 
 
 

(20) 

where K is given by 
K = F (F + 1) − J (J + 1) − I (I + 1)   (21) 

𝜇𝐵is the Bohr magneton, 𝜇𝑁 is the nuclear Bohr magneton, 𝑔𝐽  is 

the Lande g factor, 𝑔𝐼 is the nuclear g factor, A, B and C are the 
magnetic dipole, electric quadrupole and the magnetic 
octupole constants, respectively.    

The energy levels for the atom in the external 
magnetic field are found by solving for the Eigenvalues and the 
normalized Eigenvectors of the Hamiltonian.  The Eigenvalues 
represent the energy level shift  ∆ν𝑀 relative to the center-of-
gravity ν0.  The Eigenvector represents the mixing of the 
hyperfine split levels which result in the Zeeman split levels.  
The Eigenvalues are represented by the Magnetic quantum 
number M and the Eigenvectors by 𝑌𝑀

𝐹𝑚 .  The Zeeman 
spectrum arrives from the dipole allowed transitions ΔM = 0 
for π (linearly polarized) and ΔM = ±1 for σ± (circularly 
polarized).  The Zeeman line strengths are given by 

𝑆𝑞(𝑀,𝑀′) = |〈𝐼𝐽𝑀|𝑑𝑞|𝐼𝐽′𝑀′〉|
2

  , (22) 

wher 𝑀 and 𝑀′represent the Eigenvalues or energy levels of 
the lower and upper levels respectively, dq is the spherical 
component of the atomic dipole moment vector d and q = ΔM = 
±1,0.  Recasting this expression in terms of the total angular 
momentum F and its projection m and explicitly maintaining 
the relationship to the magnetic quantum number M results in 
the following equation 

𝑆𝑞(𝑀,𝑀′) = {∑ ∑ 𝑌𝑀
𝐹𝑚〈𝐼𝐽𝐹𝑚|𝑑𝑞|𝐼𝐽

′𝐹′𝑚′〉𝑌𝑀′
𝐹′𝑚′

𝐹′𝑚′𝐹𝑚

}

2

 
 
(23) 

where the un-primed and primed quantities represent the 
lower and upper states respectively.  The matrix element 
〈𝐼𝐽𝐹𝑚|𝑑𝑞|𝐼𝐽′𝐹′𝑚′〉 [16] is given by 

〈𝐼𝐽𝐹𝑚|𝑑𝑞|𝐼𝐽′𝐹′𝑚′〉 = (−1)𝐹−𝑚 [
𝐹 1 F′

−𝑚 𝑞 m′
]

× (−1)I+J′+𝐹+1√(2𝐹 + 1)(2F′ + 1)

× √
3𝑐3ℎ(2J′ + 1)ϵ0

16𝜋3ν0
3𝜏

{
𝐽 I 𝐹

F′ 1 J′
}. 

 
 
 
(24) 

 
The interaction with the atom for a resonant 

electromagnetic wave has now been characterized by the line 
strength 𝑆𝑞(𝑀,𝑀′). What remains is to obtain an expression 

for χ the polarizability tensor.  The polarizability χ is defined as 
the ratio of the induced dipole moment to the applied electric 
field.   The dipole moment can be written 𝑫 =
1 2⁄ 𝝌𝜖0𝑬0 exp[𝑖(𝒌 ∙ 𝒓 − 𝜔𝑡)] + 𝑐. 𝑐. where 𝜖0 is the electric-
permittivity constant.  Similarly the induced dipole moment 
can be written for each of the Zeeman energy levels [17], 
assuming the wavelength of the applied electromagnetic wave 
is significantly longer than the atomic radius, as 

𝑫𝑀 =
𝑒2

2ℎ
∑

[〈𝑀|𝒓|𝑀′〉 ∙ 𝑬0]〈𝑀′|𝒓|𝑀〉

ν0 + ∆ν𝑀,𝑀′ − ν − 𝑖 4𝜋𝜏⁄
𝑀′

× 𝑒𝑖(𝒌∙𝒓−𝜔𝑡) + 𝑐. 𝑐. 
 
(25) 
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where ∆ν𝑀,𝑀′  are the frequency shifts due to the Zeeman 

splitting and 𝜏 is the natural lifetime of the 2P state.  A 
comparison of these two representations for the dipole 
moment will yield a representation for the polarizability tensor 
elements to be given by 

𝜒𝑀
𝒒

=
𝑒2

ϵ0ℎ
∑

|〈𝑀|𝑟𝑞|𝑀′〉|
2

ν0 + ∆ν𝑀,𝑀′ − ν − 𝑖 4𝜋𝜏⁄
𝑀′

. 
 
(26) 

 

Making the equivalent substitution 𝑒2|〈𝑀|𝑟𝑞|𝑀′〉|
2

 = 

|〈𝑀|𝑑𝑞|𝑀′〉|
2

 = 𝑆𝑞(𝑀,𝑀′) allows the polarizability tensor to be 

recast in terms of the line strengths of each dipole allowed 
transition. 

𝜒𝑀
𝒒

=
1

ϵ0ℎ
∑

𝑆𝑞(𝑀,𝑀′)

ν0 + ∆ν𝑀,𝑀′ − ν − 𝑖 4𝜋𝜏⁄
𝑀′

 
 
(27) 

 
The polarizability tensor is a result of the interaction 

of a resonant electromagnetic plane wave propagating through 
a volume of atoms represented by the number density NM for 
each lower state |M⟩.  Since each of these particles is moving at 
a different velocity u the center-of-gravity frequency ν0 must 
be replaced by a Doppler shifted frequency ν0(1 + 𝑢/𝑐).  Then, 
integrating over the Maxwellian velocity distribution to 
account for all velocity groups 

𝑓(𝑢)𝑑𝑢 = 𝑁𝑀√
𝑀0

2𝜋𝑘𝑇
𝑒

−𝑀0𝑢
2

𝑘𝑇 𝑑𝑢 

 
(28) 

where M0 is the mass of the atom, T is the temperature of the 
cell and k is Boltzmann’s constant.  Finally, the Doppler 
corrected polarizability tensor can be expressed as 

𝜒𝑀
𝒒

=
1

ϵ0ℎ
× ∫ (∑[

𝑆𝑞(𝑀,𝑀′)

ν0(1 +
𝑢
𝑐
) + ∆ν𝑀,𝑀′ − ν −

𝑖
4𝜋𝜏

]

𝑀′

)
𝑐

−𝑐

× (𝑁𝑀√
𝑀0

2𝜋𝑘𝑇
𝑒

−𝑀0𝑢
2

𝑘𝑇 )𝑑𝑢. 

 
 

 
(29) 

 

Since each state |M⟩ represents a different energy 
level then the population of each of these levels must conform 
to a Boltzmann distribution.  Therefore, each number density 
NM = N0BM where N0 is the total number density and BM is the 
Boltzmann distribution for the |M⟩ level given by 

𝐵𝑀 =
𝑒

−ℎ∆ν𝑀
𝑘𝑇

∑ 𝑒
−ℎ∆ν𝑀

𝑘𝑇𝑀

. 

 
(30) 

 
The total bulk polarizability tensor is found by 

summing equation (29) over the lower states |M⟩.  Utilizing the 
plasma dispersion function  

𝑊(𝑧) =
𝑖

𝜋
∫

𝑒−𝑡2

𝑧 − 𝑡
𝑑𝑡

∞

−∞

= 𝑒−𝑧2
Erfc[𝑧/𝑖] 

 
(31) 

which is related to the complementary error function (Erfc).  
The total polarizability tensor can be written as 

𝜒𝑞(𝜈) =
𝑖𝑁0

𝜖0ℎ𝜐0

√
𝜋𝑀0𝑐

2

2𝑘𝑇
∑[𝐵𝑀𝑆𝑞(𝑀,𝑀′)𝑊(𝜉)]

𝑀𝑀′

 

 
 
 

𝜉 = √
𝜋𝑀0𝑐

2

2𝑘𝑇
(
𝜈0 − 𝜈 − 𝛥𝜈𝑀,𝑀′

𝜈0
+

𝑖

4𝜋𝜈0𝜏
) 

 
(32) 

Using equations 30, 31, and 32 𝜒+, 𝜒−, and 𝜒0can be calculated 
for each frequency 𝜈 and substituted back into equations 7, 8, 
and 9 to arrive at the predicted transmission through the 
GMOT filter. 
 

3. EXPERIMENTAL APPARATUS  
 

The best way to validate the outlined model is to 
compare the model’s predictions to laboratory measurements.  
To that end, an experiment using the configuration illustrated 
in fig. 1 was conducted. 

 
Fig. 1. Magneto-optical filter experimental apparatus. 

The experiment consisted of a tunable 852 nm laser 
(500 KHz line width and a mode-hop-free tuning range of 15 – 
30 GHz) propagated through crossed polarizers with a heated 
cesium vapor cell situated between the polarizers.  
Additionally, a magnetic field was applied to the vapor cell.  
The magnetic field could be oriented at θ = 0, 90 degrees and 
values in between.  Finally, the laser beam was detected by a 
silicon detector and the resulting spectrum was recorded with 
an oscilloscope.   

 

Three separate experiments were conducted to 
validate the model.  The first case was the standard Faraday 
configuration, θ = 0, with an applied magnetic field of 300 
Gauss, a cell temperature of 58 C, a cell length of 7.5 cm and the 
laser beam initially polarized along the x-axis and interrogated 
by a polarizer aligned along the y-axis.  Figures 2 and 3 show 
the experimental and the theoretical spectra.  The experiment 
and calculated results are in good agreement considering the 
uncertainty in the absolute temperature, the homogeneity of 
the magnetic field and fluxuations in laser power.  
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Fig. 2. Experimental Faraday transmission with B = 300 Gauss, 
T = 58 C, L=7.5 cm, and θ = 0 degrees. 

 

 
Fig. 3. Theoretical Faraday transmission with B = 300 Gauss, T 
= 58 C, L=7.5 cm, and θ = 0 degrees. 

 
The second case was the standard Voigt 

configuration, θ = 90 degrees, with an applied magnetic field of 
700 Gauss, a cell temperature of 84 C, a cell length of 7.5 cm 
and the laser beam initially polarized at 45 degrees relative to 
the x-axis and interrogated by a polarizer aligned to -45 
degrees relative to the x-axis.  Figures 4 and 5 show the 
experimental and the theoretical spectra.  The experiment and 
calculated results are in good agreement considering the 
normal experimental uncertainty in the absolute temperature, 
the homogeneity of the magnetic field and probe laser power 
fluxuations. 

 

 
Fig. 4. Experimental Voigt transmission with B = 700 Gauss, T = 
84 C, L = 7.5 cm, θ = 90 degrees. 

 

 
Fig. 5. Theoretical Voigt transmission with B = 700 Gauss, T = 
84 C, L = 7.5 cm, θ = 90 degrees. 

 
For the last case the angle between the magnetic field 

and the probe laser was set to θ = 87 degrees, with an applied 
magnetic field of 500 Gauss, a cell temperature of 100 C, a cell 
length of 7.5 cm and the laser beam initially polarized along 
the x-axis and interrogated by a polarizer aligned along the y-
axis.   Figures 6 and 7 show the experimental and the 
theoretical spectra.  The experiment and calculated results are 
in good agreement considering the uncertainty in the absolute 
temperature, the homogeneity of the magnetic field and 
fluxuations in laser power. 

 

 
Fig 6. Experimental GMOT with B = 500 Gauss, T = 100 C, L = 
7.5 cm, θ = 87 degrees. 

 

 
Fig 7. Theoretical GMOT with B = 500 Gauss, T = 100 C, L = 7.5 
cm, θ = 87 degrees. 

 
An examination of the three test cases in figures 2-7 

used to verify the efficacy of the model demonstrates good 

0

0.5

1

1.5

2

2.5

3

-10 -5 0 5 10

Tr
an

sm
is

si
o

n
 (

a.
u

.)

Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

Tr
an

sm
is

si
o

n

Frequency (GHz)

0

2

4

6

8

10

12

-12 -2 8

Tr
an

sm
is

si
o

n
 (

a.
u

.)

Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

-12 -2 8

Tr
an

sm
is

si
o

n

Frequency (GHz)

0

0.1

0.2

0.3

0.4

-15 -5 5 15

Tr
an

sm
is

si
o

n
 (

a.
u

.)

Frequency (GHz)

0

0.2

0.4

0.6

0.8

-15 -5 5 15

Tr
an

sm
is

si
o

n

Frequency (GHz)



6 

 

agreement between the experimental and theoretical spectra.  
This is true even over a wide range of magnetic field and 
temperature variations.  Given the good agreement between 
theory and experiment, it is now possible to use the model to 
perform filter optimization. 

 

4. OPTIMIZED FILTER 
 

To demonstrate the usefulness of a GMOT solution for 
magneto-optical scattering we will compare an optimized 
Faraday filter to a GMOT filter.  To do this we have drawn from 
the work of Zentile [18].  Zentile presents an idealized case for 
a cesium filter.  The quality of the filter is quantified by the use 
of two metrics.  The first metric is the equivalent noise 
bandwidth (ENBW):  

ENBW =
∫ T(ν)dν

∞

0

T(νs)
, 

 
(33) 

where T is the transmission through the filter and 𝜈𝑠is the 
frequency at maximum transmission through the filter.  The 
second metric is a figure of merit (FOM): 

FOM =
T(νs)

ENBW
  

(34) 

 
Using these metrics the general model was run for 

several cases to identify an optimized solution.  The spectrum 
for such an optimized case is shown in figure 8, the 
recalculated case from the article is shown in figure 9, and a 
comparison of the metrics is provided in table 1. 

 

 
Fig. 8. A GMOT optimized filter. 

 

 
Fig 9. A Faraday optimized filter. 
 
 

Table 1. Referenced Faraday filter metrics compared to 
calculated Faraday filter and GMOT filter. 

 Faraday 
[18] 

Faraday 
calculated 

GMOT 

B (Gauss) 45.3 45.3 1000 
T (C) 60 60 93 
ENBW (GHz) 0.96 0.95 0.56 
Max Transmission % 77 76 88 
FOM (GHz-1) 0.80 0.80 1.56 
FWHM (MHz) 310 308 250 
Angle θ (degrees) 0 0 88 
Transition S1/2→P1/2 S1/2→P1/2 S1/2→P3/2 

 
A comparison of these two cases reveals that using a 

more generalized approach to magneto-optical filters can yield 
filters almost two times better than a standard Faraday 
configuration.  From these results it is clear that a more 
generalized approach for examining magneto-optical 
scattering can yield significant benefits for light filtering and 
has significant potential for other applications. 
 

5. CONCLUSION 
 
This work has completed a model for the analysis of 

magneto-optical filters.  The model includes all relevant 
elements for the accurate characterization of atomic media.  
These elements include the atomic hyperfine and Zeeman 
splitting of the energy levels, the Doppler Effect the Boltzmann 
distribution of the energy level population and line strength for 
each dipole allowed transmission.  Additionally, the model 
accurately propagates a plane wave through a dispersive 
medium yielding a result that can predict the resulting 
spectrum for any relative angle between a plane wave 
direction of propagation and the applied magnetic field.  This 
model was experimentally validated for both limiting cases 
Faraday and Voight in addition to a case with arbitrary angle of 
incidence.  All three cases show good agreement between the 
theoretical predictions and the experimental spectra.  In 
addition, the significance of examining magneto-optical filters 
for arbitrary angle cases was demonstrated by revealing an 
optimized filter with an equivalent noise bandwidth of 0.56 
GHz which is approximately a factor of two better than those 
previously reported. 
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